Метод расчёта переменных режимов теплообменников

Инж. И.М. Сапрыкин (ООО ПНТК «Энергетические Технологии», г. Нижний Новгород)

Введение

Широкое применение теплообменных аппаратов в теплоэнергетике и других областях техники вызывает потребность в методиках расчета переменных (нерасчетных) режимов работы.

Расчёты теплообменников (ТО) в переменных режимах требуются для решения широкого круга задач. К ним можно отнести: обоснование выбора оборудования трубопроводных систем, включающих ТО; определение величин теплового потока (тепловая мощность) и расходов теплоносителей при отсутствии расходомеров; диагностика состояния поверхностей нагрева ТО; прогнозирование параметров теплоносителей.

На рынке теплообменного оборудования представлен весьма широкий спектр теплообменных аппаратов отечественных и зарубежных производителей.

Различные типы и виды ТО отличаются между собой габаритами, конструктивными особенностями, расчетными тепловыми потоками, диапазонами температур теплоносителей. Почти у каждого производителя теплообменного оборудования имеются свои приёмы интенсификации процессов теплопередачи с целью повышения технико-экономических характеристик ТО. Каждый производитель имеет свои эксклюзивные программы по расчету ТО, учитывающие их индивидуальные особенности.

Имеющиеся в широком пользовании, главным образом нормативные, методики направлены на проектный и конструктивный расчёты ТО. В то же время существующие методики расчетов переменных режимов не всегда учитывают особенности конкретных ТО и теплофизические свойства теплоносителей.

Обращение к производителям ТО с просьбой, о выполнении дополнительных расчетов для находящегося в эксплуатации ТО, не всегда удобно либо вообще невозможно.

Методика расчёта переменных режимов ТО должна быть достаточно универсальной, оперировать минимальным количеством исходных данных и учитывать теплофизические свойства теплоносителей.

Ниже приводится метод расчета переменных режимов водоводяных ТО, который, по мнению автора, отвечает этим требованиям и может восполнить этот пробел.

Описание метода

Главным и интегральным показателем эффективности теплообмена в ТО является коэффициент теплопередачи (КТП). КТП есть мера термической проводимости ТО. При сравнении ТО разных производителей, имеющих, например, одинаковые расчётные параметры (тепловой поток и 4 температуры теплоносителей на портах), различие между ними в целом сводится к различию их КТП.

Предлагаемый метод определения переменных режимов водоводяных противоточных ТО основан на применении критериальных уравнений конвективного теплообмена с учётом теплофизических свойств теплоносителей — воды. Теплофизические свойства воды: теплоемкость, теплопроводность, температуропроводность, кинематическая вязкость, плотность. В качестве исходной информации используются расчетные (паспортные) характеристики ТО: тепловой поток, температуры греющего и нагреваемого теплоносителей, КТП или площадь поверхности нагрева.

Для описания взаимосвязи между параметрами TO предлагается следующее уравнение:

$$\left(1 - K_p \times R_{ct}\right) \times \frac{\Theta}{\Theta_p} \times q^{1-m} + \left(K_p \times R_{ct} + \frac{1}{\beta} - 1\right) \times q = \frac{\Delta t}{\Delta t_p}$$
(1),

где K_p – расчетный коэффициент теплопередачи;

R_{ct} – термическое сопротивление стенки;

β –степень чистоты поверхности теплообмена;

q – относительный тепловой поток q=Q/Q_p;

 Δt , Δt_p – логарифмические разности температур – температурные напоры: текущий и расчетный;

 Θ , Θ_p — теплофизические комплексы (ТФК): текущий и расчетный, учитывающие теплофизические свойства воды и геометрические характеристики теплообменников.

 $T\Phi K\ \Theta$ и Θ_p можно назвать комплексами состояния, а их отношение Θ/Θ_p – комплексом процесса.

В физическом смысле уравнение 1 заключает в себе в безразмерном виде баланс потерь температурного напора на термических сопротивлениях ТО. Правая часть уравнения есть температурный напор $\Delta t/\Delta t_p$, в левой части содержатся слагаемые потерь температурного напора. Эти потери образуются на термических сопротивлениях тепловых переходов (тепловосприятие и теплоотдача) и на термических сопротивлениях, разделяющей теплоносители стенки и возможного слоя накипи. Первое слагаемое есть потери температурного напора на термических сопротивлениях тепловых переходов. Второе слагаемое есть потери температурного напора на термических сопротивлениях стенки $K_p \times R_{ct} \times q$ и слоя накипи $K_p \times R_{h\kappa} \times q$. Ниже будет показано, что последнее выражение $K_p \times R_{h\kappa} \times q$ равно $(1/\beta-1) \times q$.

По известному расчетному режиму можно рассчитать параметры для любого другого режима, в том числе определить тепловой поток через ТО по измеренным на портах 4-м температурам теплоносителей. Последнее возможно только при условии заранее известной величины степени чистоты ТО.

Степень чистоты теплопередающих поверхностей β есть отношение КТП загрязненного ТО к расчетному КТП чистого ТО при расчетных расходах теплоносителей

$$\beta = \frac{K_{\scriptscriptstyle HK}}{K_{\scriptscriptstyle p}} = \frac{1}{1 + K_{\scriptscriptstyle p} \times R_{\scriptscriptstyle HK}},\tag{2}$$

где $K_{\text{нк}}$ —коэффициент теплопередачи при наличии накипи;

 $R_{{ ext{h}}{ ext{K}}}$ — термическое сопротивление слоя накипи.

Для чистого ТО R_{HK} =0, а β =1; для загрязненного накипью R_{HK} >0, а β <1. Степень загрязнения ТО соответственно будет выражаться как 1- β .

Влияние накипных отложений на теплопередающих поверхностях ТО на степень чистоты β можно определить из уравнения 2. Ниже в таблице 1 приведена зависимость степени чистоты ТО β от толщины слоя накипи для разных ТО при различных расчётных значениях КТП: 2000, 4000, 6000 Bt/(м²×°К). Теплопроводность накипи условно принята λ =1 Bt/(м×°К).

Таблица 1. Зависимость степени чистоты ТО от толщины слоя накипи.

Κ _p ,		Толщина слоя накипи, мм									
$BT/(M^2 \times {}^{\circ}K)$	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7			
2000	1,000	0,833	0,714	0,625	0,556	0,500	0,455	0,417			
4000	1,000	0,714	0,556	0,455	0,385	0,333	0,294	0,263			
6000	1,000	0,625	0,455	0,357	0,294	0,250	0,217	0,192			

По результатам расчёта в таблице 1 видно, что с ростом расчётного КТП степень чистоты ТО, а, следовательно, устойчивость в сохранении теплопередающей способности при накипеобразовании, резко снижается. Например, при толщине слоя накипи 0.5 мм и

расчётном КТП $K_D=2000~BT/(M^2\times^{\circ}K)$ степень чистоты составит $\beta=0.5$, тогда как при КТП $K_p = 6000 \text{ BT/(M}^2 \times \text{°K})$ степень чистоты только $\beta = 0.25$.

Для определения степени чистоты β поверхности теплообмена ТО предлагается формула, полученная из уравнения 1:

$$\beta = \left[\frac{\Delta t}{\Delta t_p \times q} + \left(1 - K_p \times R_{ct} \right) \times \left(1 - \frac{\Theta}{\Theta_p \times q^m} \right) \right]^{-1}$$
(3)

В уравнении 3 степень чистоты в представлена, как функция постоянных и текущих переменных ТО, из чего следует, что степень чистоты можно определить по известным одномоментно измеренным: тепловом потоке и 4-м температурам теплоносителей на портах.

ТФК состояния, входящие в уравнения 1, 3 имеют вид:

$$\Theta = \left[f_{\varepsilon}^{m} \times \ell_{\varepsilon}^{1-m} \times \frac{(t_{1} - t_{2})^{m}}{(t_{1} + t_{2})^{u}} + f_{u}^{m} \times \ell_{u}^{1-m} \times \frac{(\tau_{1} - \tau_{2})^{m}}{(\tau_{1} + \tau_{2})^{u}} \right] \times (t_{1} + t_{2} + \tau_{1} + \tau_{2})^{-y}$$

$$\tag{4}$$

 t_1, t_2 — температуры греющего теплоносителя на входе и выходе теплообменника;

 $au_1, \, au_2$ - температуры нагреваемого теплоносителя на выходе и входе теплообменника; $f_{r}, \, f_{H}$ - площади сечений каналов по греющей и нагреваемой сторонам

теплообменника;

 $\ell_{\rm r},\ \ell_{\rm H}$ — характерные размеры каналов по греющей и нагреваемой сторонам теплообменника:

т, и, у – показатели степеней.

Для кожухотрубных ТО площади сечений каналов представляют собой площади сечения межтрубного пространства и суммарной площади трубного пространства. В зависимости от конкретного технологического процесса греющий теплоноситель может направляться в межтрубное пространство либо в трубное пространство.

Площади сечений межтрубного и трубного пространств определяются по формулам

$$f_{\scriptscriptstyle M} = \frac{\pi}{4} \times \left(D_k^2 - Z_{mp} \times d_{\scriptscriptstyle H}^2 \right); \qquad f_{\scriptscriptstyle m} = \frac{\pi}{4} \times Z_{mp} \times d_{\scriptscriptstyle e}^2,$$

где D_k – внутренний диаметр корпуса теплообменника;

 Z_{mp} – число трубок в корпусе;

d_н – наружный диаметр трубки;

d_в – внутренний диаметр трубки.

Характерными размерами межтрубного и трубного пространств кожухотрубных ТО являются эквивалентные диаметры, которые определяются:

$$\ell_{\scriptscriptstyle M} = d_{\scriptscriptstyle 3M} = \frac{4 \times f_{\scriptscriptstyle M}}{\pi \times (D_{\scriptscriptstyle k} + Z_{\scriptscriptstyle mp} \times d_{\scriptscriptstyle H})}; \qquad \ell_{\scriptscriptstyle m} = d_{\scriptscriptstyle 3M} = d_{\scriptscriptstyle 6}$$

Характерные размеры каналов пластинчатых ТО: $\ell=2\times S$, где S — ширина канала.

Для одноходовых пластинчатых ТО можно допустить равенство площадей сечений каналов $f_r = f_H$ и характерных размеров $\ell_r = \ell_H$ для греющего и нагреваемого теплоносителей. Следовательно так как в уравнении 1 теплофизический комплекс входит как ТФК процесса в виде отношения $\Theta/\Theta_{\rm p}$, то для пластинчатого ${\rm TO}\ \Theta$ будет выглядеть следующим образом:

$$\Theta = \left[\frac{(t_1 - t_2)^m}{(t_1 + t_2)^u} + \frac{(\tau_1 - \tau_2)^m}{(\tau_1 + \tau_2)^u} \right] \times (t_1 + t_2 + \tau_1 + \tau_2)^{-y}$$
(5)

Для $\Theta_{\rm p}$ то же выражение 5 только с расчётными значениями температур.

Уравнение 1 описывает режимы для одноходовых противоточных кожухотрубных и пластинчатых ТО. Различие между ними заключается в структуре ТФК состояния Θ и $\Theta_{\rm D}$ определяемых для ТО: кожухотрубных – по формуле 4, пластинчатых – по формуле 5.

Показатель степени "m" принимает значения для TO: кожухотрубных TO m=0.8; для пластинчатых m=0.73 (Л.1.). В (Л.2.) приводится зависимость показателя степени «m» от геометрических размеров канала между пластинами: $m = 0.45 \times (L/\ell)^{0.1}$, где L – длина канала.

Показатели степеней "u" и "y" получены в результате аппроксимации коэффициентов, описывающих теплофизические свойства воды функциями от средних температур теплоносителей. В результате аппроксимации получены для диапазона температур воды 5°С...200°С значения показателей степеней: u=0.0572, y=0.234.

Следует отметить, что в указанном диапазоне температур 5°С...200°С КТП зависит от теплофизических свойств воды, конкретно от ТФК процесса. При неизменной логарифмической разности температур Δt =const, изменение всех 4-х температур на одну и ту же величину вызывает изменение КТП. Например, если для 4-х расчетных температур t_1 =75°С; t_2 =55°С; t_2 =35°С; t_1 =65°С (Δt =14.43) ТФК состояния Θ_p =4,47, то для других 4-х температур с прибавкой δt =25°С t_1 =100°С; t_2 =80°С; t_2 =60°С; t_1 =90°С (Δt =14,43) ТФК состояния окажется равным Θ =4,02. ТФК процесса Θ/Θ_p =0,9. Если принять относительный КТП в расчётном состоянии k_o =1, то в конечном состоянии будет равен k_o =1.35 при «стартовом» расчётном КТП 2000 Вт/($M^2 \times {}^\circ$ К).

Эта зависимость, при разных расчётных КТП, представлена в таблице 2.

 				_				
К _р ,	ТФК процесса Ө/Өр							
$B_T/(M^2 \times {}^{\circ}K)$	0,90	0,95	1,00	1,05	1,10			
2000	1,35	1,16	1,00	0,86	0,75			
4000	1.27	1.13	1.00	0,89	0.79			

6000

Таблица 2. Зависимость относительного КТП от ТФК процесса.

Для ТО, используемых в системах теплоснабжения (отопление, вентиляция, горячее водоснабжение), входящие в состав уравнения 1 два комплекса: относительный температурный напор $\Delta t/\Delta t_p$.и комплексе Θ/Θ_p , в зависимости от комбинаций 4-х температур на портах, изменяются в диапазонах: $\Delta t/\Delta t_p = 0.2...1.5$; $\Theta/\Theta_p = 0.4...1.6$.

1,22 | 1,11 | 1,00 | 0,91 |

Оба параметра хотя и являются функциями 4-х температур, но при этом никак не связаны между собой и могут рассматриваться как две независимые переменные для функции — теплового потока. Зависимость величин теплового потока q от комплексов $\Delta t/\Delta t_p$ и Θ/Θ_p приведены: для чистого TO с β =1 в таблице 3; для загрязнённого TO с β =0,7 в таблице 4. Эти зависимости рассчитаны для пластинчатого TO с расчётным КТП K_p =4000 Bt/($M^2 \times ^\circ K$) и с толщиной рабочей пластины 0,5 мм, изготовленной из нержавеющей стали AISI 316 с коэффициентом теплопроводности λ =16 Bt/($M^2 \times ^\circ K$). Таблицы 3, 4 можно рассматривать, как пример режимных карт конкретного TO. Жирным шрифтом и заливкой выделены значения, имеющие практический смысл.

Таблица 3. Зависимость теплового потока от температурного напора и ТФК процесса для чистого ТО с β =1.

	Степень чистоты β=1,0											
Θ/Θp		∆t/∆tp										
О / О р	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2			
0,4	0,677	1,115	1,614	2,154	2,723	3,321	3,940	4,576	5,224			
0,6	0,265	0,506	0,817	1,194	1,617 2,081 2,572 3,10		3,100	3,645				
0,8	0,111	0,230	0,407	0,638	0,921	1,249	1,620	2,025	2,459			
1,0	0,052	0,113	0,210	0,345	0,523	0,742	1,000	1,294	1,622			
1,2	0,027	0,060	0,116	0,195	0,305	0,446	0,620	0,824	1,060			
1,4	0,016	0,035	0,067	0,116	0,185	0,276	0,393	0,532	0,700			
1,6	0,009	0,022	0,042	0,073	0,118	0,177	0,256	0,352	0,469			

Таблица 4. Зависимость	теплового	потока	от т	температурного	напора и	тФК	процесса
для TO с β=0.7.							

	Степень чистоты β=0,7										
⊝/⊝р		Δt/Δtp									
О/Ор	0,4	0,5	0,6	0,7	Δt/Δtp 7 0,8 0,9 12 0,842 0,996 1, 13 0,614 0,749 0, 19 0,436 0,550 0, 18 0,302 0,396 0,		1,0	1,1	1,2		
0,4	0,276	0,408	0,547	0,692	0,842	0,996	1,150	1,307	1,467		
0,6	0,152	0,251	0,364	0,485	0,614	0,749	0,888	1,031	1,177		
0,8	0,081	0,148	0,232	0,329	0,436	0,550	0,671	0,798	0,928		
1,0	0,044	0,087	0,145	0,218	0,302	0,396	0,498	0,606	0,721		
1,2	0,025	0,051	0,116	0,143	0,206	0,280	0,363	0,455	0,553		
1,4	0,015	0,032	0,058	0,094	0,141	0,198	0,263	0,337	0,419		
1,6	0,009	0,020	0,038	0,063	0,097	0,140	0,191	0,249	0,315		

Из уравнения 1 могут быть получены приближённые уравнения. Если принять термическое сопротивление стенки поверхности нагрева равным нулю R_{ct} =0, то получится уравнение 6, не зависящее от расчётного КТП и явно выраженное относительно теплового потока q:

$$q = \left(\frac{\Delta t}{\Delta t_p} \times \frac{\Theta_p}{\Theta}\right)^{\frac{1}{1-m}} \tag{6}$$

По уравнению 6 результаты расчётов с точностью до 20% могут быть получены для TO, у которых отношение $(\Delta t/\Delta t_p)/(\Theta/\Theta_p)=0.9...1.0$.

Если же не учитывать ТФК процесса ($\Theta/\Theta_p=1$), то получится уравнение 7:

$$\left(1 - K_p \times R_{ct}\right) \times q^{1-m} + \left(K_p \times R_{ct} + \frac{1}{\beta} - 1\right) \times q = \frac{\Delta t}{\Delta t_p}$$

$$(7)$$

По уравнению 7 результаты расчётов с точностью до 20% могут быть получены для ТО, у которых ТФК процесса находится в диапазоне Θ/Θ_p =0.95...1.05.

Практическое применение уравнений 6, 7 при теплоносителях – воде - весьма ограничено и может носить только качественный характер.

С помощью общего уравнений 1, 3, 4, 5 можно решать различные встречающиеся в практике задачи, условия которых приведены в таблице 6 (знаком «+» обозначены известные параметры, знаком «?» искомые параметры).

Таблица №5.

Наименование параметра		Номер задачи									
Наименование параметра	Обозн.	1	2	3	4	5	6	7	8	9	10
Тепловой поток	Q	?	?	?	+	+	+	+	+	+	+
Расход греющего теплоносителя	G_1	?	+	+	?	?	+	+	+	+	+
Температура греющей воды на входе	t_1	+	+	?	?	+	?	+	+	+	+
Температура греющей воды на выходе	t_2	+	?	+	+	?	?	+	+	+	+
Расход нагреваемого теплоносителя	G_2	?	+	+	+	+	+	?	?	+	+
Температура нагреваемой воды на выходе	τ_1	+	?	+	+	+	+	?	+	?	+
Температура нагреваемой воды на входе	τ_2	+	+	?	+	+	+	+	?	?	+
Степень чистоты	β	+	+	+	+	+	+	+	+	+	?

Задача №1 позволяет для ТО с известными расчетными значениями температур теплоносителей и степени чистоты вычислить тепловой поток и расходы теплоносителей.

Следует иметь ввиду, что при решении задач 1, 2, 3, величина Q (тепловой поток) весьма сильно зависит от точности измерения 4-х температур на портах ТО.

Примеры расчетов

Расчеты выполнены по формулам 1, 4, 5, показатель степени m=0.73.

Пример 1. На центральном тепловом пункте установлен пластинчатый ТО для подключения систем отопления и вентиляции по независимой схеме. Температурный режим по греющему теплоносителю 130/80°C, по нагреваемому теплоносителю 95/70°C, ТО имеет расчётные характеристики: тепловой поток 3000 КВт, расход греющего теплоносителя 51.6 т/ч, расход нагреваемого теплоносителя 103.2 т/ч, поверхность нагрева 22.8 м².

В отсутствии расходомеров необходимо определить фактический тепловой поток и расходы теплоносителей.

В одном из режимов эксплуатации измеренные 4 температуры теплоносителей на портах чистого β =1 TO составили: греющий теплоноситель на входе 59.1°C, на выходе 44°C; нагреваемый теплоноситель на входе 40.1°C, на выходе 47.6°C.

Результаты расчёта (задача №1): тепловой поток q=0.299 или Q=897 КВт; расход греющего теплоносителя 51.1 т/ч; расход нагреваемого теплоносителя 102.8 т/ч; КТП 5596 $Bt/(m^2 \times {}^{\circ}K)$.

Пример 2. В тепловых пунктах систем централизованного теплоснабжения ТО, предназначенные для подогрева водопроводной воды на нужды горячего водоснабжения (ГВС), работают в весьма широких пределах изменения температур теплообменивающихся сред.

Температура воды ГВС на входе в ТО в течение суток изменяется от 5°C до 50°C (циркуляция при отсутствии водоразбора). В свою очередь, в течение отопительного сезона температура теплоносителя на входе в ТО может изменяться от 70°C до 150°C.

Кроме того, тепловой поток для ГВС, передаваемый ТО в течение суток при отсутствии баков-аккумуляторов горячей воды, может изменяться в 10 и более раз.

В таблице 6 приведены расчеты режимов работы одноходового пластинчатого ТО типа М10В фирмы Alfa Laval с поверхностью нагрева 30.96 м². ТО предназначен для обеспечения максимальночасовой тепловой нагрузки ГВС 2000 КВт и подключен к тепловым сетям по параллельной схеме. Для параллельной схемы включения ТО расчетными температурами для подбора ТО являются:

по греющему теплоносителю (сетевая вода):

- на входе в TO t_1 =70°C; на выходе из TO t_2 =30°C; по нагреваемому теплоносителю (водопроводная вода):

- на входе в TO $\tau_2 = 5^{\circ}$ C; на выходе из TO $\tau_1 = 60^{\circ}$ C.

Режим 1 – расчетный. Степень чистоты ТО принята $\beta_p=1$.

Режим 2- температура греющего теплоносителя составляет t_1 =130°C. Необходимо найти расход греющего теплоносителя и его температуру после ТО. Решение -задача №5, степень чистоты ТО принята β_p =1. Расход теплоносителя G_1 снижается с 43 т/ч до 14.2 т/ч, а температура t_2 падает с 30°C до 8.9°C.

Режим 3 - температура греющего теплоносителя составляет t_1 =70°C, измеренная ранее степень чистоты β =0.71 (на рабочей поверхности предполагается наличие слоя накипи толщиной S_H =0.1 мм, теплопроводность накипи условно принята λ =1 Вт/(м×°K)). Необходимо найти расход греющего теплоносителя и его температуру после ТО. Решение - задача №5, для обеспечения температуры горячей воды τ_1 =60°C расход теплоносителя G_1 по расчету увеличивается с 43.0 т/ч до 65.0 т/ч, а температура t_2 возрастает с 30°C до 43.6°C.

Режим 4 - температура греющего теплоносителя составляет t_1 =70°C, измеренная ранее степень чистоты β =0.46 (на рабочей поверхности предполагается наличие слоя накипи толщиной S_H =0.3 мм, теплопроводность накипи условно принята λ =1 BT/(м×°K)). Решение - задача №2, если по греющей стороне отсутствует возможность дальнейшего увеличения расхода теплоносителя свыше G_1 =65.0 т/ч, то передаваемый тепловой поток снижается до

1648 КВт, температура t_2 возрастает с 30°C до 48.2°C, а температура горячей воды τ_1 снижается до 50.3°C.

Таблица 6. Результаты расчётов режимов работы ТО.

таолица о. т сзультаты расчетов режимов	03Н.		Режимы теплобменника					
Наименование	090	1	2	3	4	5	6	
Степень чистоты	β	1.0	1.0	0.71	0.46	1.0	1.0	
Толщина накипи, мм с λ=1 Bт/(м×°K)	$\delta_{\scriptscriptstyle HK}$	0.0	0.0	0.1	0.3	0.0	0.0	
Тепловой поток, КВт	Q	2000	2000	2000	1648	190	190	
Температура греющей воды на входе, °С	t ₁	70	130	70	70	70	130	
Температура греющей воды на выходе, °С	t ₂	30	8.9	43.6	48.2	50.46	50.01	
Температура нагреваемой воды на выходе, °С	τ_1	60	60	60	50.3	60	60	
Температура нагреваемой воды на входе, °С	$ au_2$	5	5	5	5	50	50	
Коэффициент теплопередачи, Вт/(м²×°K)	K	3991	2861	3088	1799	2008	1054	
Расход греющего теплоносителя, т/ч	G ₁	43.0	14.2	65.0	65.0	8.4	2.0	
Расход нагреваемого теплоносителя, т/ч	G ₂	31.3	31.3	31.3	31.3	16.3	16.3	

Режимы 5, 6 — циркуляционные, задача №5. В режиме 6 при температуре t_1 =130°C расход греющего теплоносителя снижается до G_1 =2.0 т/ч (более чем в 20 раз по сравнению с режимом 1).

Пример 3. В отопительной котельной, имеющей двухконтурную тепловую схему, с расчётными температурами котлового контура $110/80^{\circ}$ С и с расчётными температурами сетевого контура $95/70^{\circ}$ С установлен отопительный ТО с расчётными характеристиками: тепловой поток Q_p =2000 кВт; КТП K_p =4500 Вт/($M^2 \times K^2$); площадь поверхности нагрева 27.1 M^2 ; степень чистоты R_p =1.

После длительной эксплуатации TO, в результате загрязнения теплопередающих поверхностей, возрос перепад давления на нагреваемой стороне и возросла температура греющего теплоносителя на выходе из TO. Необходимо найти фактическую степень чистоты TO.

Для определения степени чистоты ТО в котельной были одновременно произведены измерения передаваемой тепловой мощности и четырёх температур на портах ТО: $Q_{\text{изм}}$ =850 кВт; t_1 =90°C; t_2 =60.4°C; τ_1 =56.8°C; τ_2 =46.2°C. Фактическая степень чистоты ТО составила β =0.3 (задача №10). Для чистого ТО при этом же режиме температура греющего теплоносителя на выходе из ТО должна быть t_2 =46.6°C, а не 60.4°C (задача №5).

Обоснование метода

Уравнения 1, 3 4, 5, 6 получены исходя из следующих соображений.

В основе работы всех ТО лежит физическое явление – конвективный теплообмен между теплоносителями и разделяющей поверхностью.

Известно, что КТП ТО выражается формулой:

$$K = \left(\frac{1}{\alpha_z} + \frac{1}{\alpha_{H}} + R_{ct} + R_{HK}\right)^{-1},$$

где $\alpha_{\scriptscriptstyle T}$ и $\alpha_{\scriptscriptstyle H}$ коэффициенты теплоотдачи и тепловосприятия теплообменивающихся сред.

Также известно, что теплообмен на поверхности описывается критерием Нуссельта:

$$\alpha = Nu \times \frac{\lambda}{\ell}$$
, где:

Nu — число Нуссельта;

 λ - коэффициент теплопроводности теплоносителя.

Число Нуссельта для ТО представляется следующим образом:

$$Nu = A \times \text{Re}^m \times \text{Pr}^n \times \left(\frac{\text{Pr}}{\text{Pr}_{ct}}\right)^{0.25},$$

где A — постоянная величина; n=0.43 - постоянная величина/

 ${
m Re,\ Pr,\ Pr_{ct}}$ — число Рейнольдса, число Прандтля для теплоносителя, число Прандтля для теплоносителя на поверхности разделяющей стенки.

$$\operatorname{Re} = w \times \frac{\ell}{\upsilon}, \qquad \operatorname{Pr} = \frac{\upsilon}{a}, \qquad \operatorname{Pr}_{ct} = \frac{\upsilon_{ct}}{a_{ct}}$$

где W — скорость теплоносителя;

 υ — коэффициент кинематической вязкости теплоносителя.

а — температуропроводность теплоносителя.

 υ_{ct} , a_{ct} - коэффициенты кинематической вязкости и температуропроводности теплоносителя при средней температуре стенки.

Коэффициент α, выраженный через теплофизические свойства, скорость теплоносителя и характерный размер, определяется:

$$\alpha = A \times \frac{\lambda}{\ell} \times \left(\frac{w \times \ell}{\upsilon}\right)^m \times \left(\frac{\upsilon}{a}\right)^{n+0.25} \times \left(\frac{a_{ct}}{\upsilon_{ct}}\right)^{0.25}$$

Последнее выражение можно переписать иначе

$$\alpha = A \times \left(\frac{\lambda \times \upsilon^{n-m+0.25}}{a^{n+0.25}}\right) \times \left(\frac{a_{ct}}{\upsilon_{ct}}\right)^{0.25} \times \frac{w^m}{\ell^{1-m}}$$

Скорости движения греющего \mathbf{w}_{Γ} и нагреваемого \mathbf{w}_{H} теплоносителей в каналах:

$$w_{\varepsilon} = \frac{Q}{c_{\varepsilon} \times \rho_{\varepsilon} \times (t_{1} - t_{2}) \times f_{\varepsilon}}; \qquad w_{n} = \frac{Q}{c_{n} \times \rho_{n} \times (\tau_{1} - \tau_{2}) \times f_{n}};$$

где Q — тепловой поток;

 $c_{\mbox{\tiny г}}, c_{\mbox{\tiny H}}$ — теплоемкости греющего и нагреваемого теплоносителей;

 $\rho_{\mbox{\tiny Γ}}, \, \rho_{\mbox{\tiny H}}$ – плотности греющего и нагреваемого теплоносителей.

Коэффициенты $\alpha_{\scriptscriptstyle \Gamma},\,\alpha_{\scriptscriptstyle H}\,c$ учетом подстановки скоростей определяются:

$$\alpha_{z} = A \times \left(\frac{\lambda_{z} \times \upsilon_{z}^{n-m+0.25}}{a_{z}^{n+0.25}}\right) \times \left(\frac{a_{ct}}{\upsilon_{ct}}\right)^{0.25} \times \frac{Q^{m}}{\left[c_{z} \times \rho_{z} \times (t_{1} - t_{2}) \times f_{z} \times \ell_{n}^{1-m}\right]^{m}}$$

$$\alpha_{H} = A \times \left(\frac{\lambda_{H} \times \upsilon_{H}^{n-m+0.25}}{a_{H}^{n+0.25}}\right) \times \left(\frac{a_{ct}}{\upsilon_{ct}}\right)^{0.25} \times \frac{Q^{m}}{\left[c_{H} \times \rho_{H} \times (\tau_{1} - \tau_{2}) \times f_{H} \times \ell_{H}^{1-m}\right]^{m}}$$

Последние выражения можно переписать иначе

$$\alpha_{z} = \left(\frac{\lambda_{z} \times \nu_{z}^{n-m+0.25}}{c_{z}^{m} \times \rho_{z}^{m} \times a_{z}^{n+0.25}}\right) \times \left(\frac{a_{ct}}{\nu_{ct}}\right)^{0.25} \times \frac{A \times Q^{m}}{\left[\left(t_{1} - t_{2}\right) \times f_{z} \times \ell_{z}^{1-m}\right]^{m}}$$

$$\alpha_{H} = \left(\frac{\lambda_{H} \times \nu_{H}^{n-m+0.25}}{c_{H}^{m} \times \rho_{H}^{m} \times a_{H}^{n+0.25}}\right) \times \left(\frac{a_{ct}}{\nu_{ct}}\right)^{0.25} \times \frac{A \times Q^{m}}{\left[\left(\tau_{1} - \tau_{2}\right) \times f_{H} \times \ell_{H}^{1-m}\right]^{m}}$$

В первом выражении первый сомножитель в круглых скобках представляет собой комплекс, описывающий теплофизические свойства греющего теплоносителя. Во втором

выражении первый сомножитель в круглых скобках представляет собой комплекс, описывающий теплофизические свойства нагреваемого теплоносителя. В обоих выражениях второй сомножитель в круглых скобках представляет собой комплекс, описывающий теплофизические свойства обоих теплоносителей на поверхностях разделяющей стенки.

Упомянутые комплексы, удобно аппроксимировать степенными функциями от средних температур теплоносителей.

$$\left(\frac{\lambda_{\varepsilon} \times \nu_{\varepsilon}^{n-m+0.25}}{c_{\varepsilon}^{m} \times \rho_{\varepsilon}^{m} \times a_{\varepsilon}^{n+0.25}}\right) = A_{1} \times (t_{1} + t_{2})^{u}; \qquad \left(\frac{\lambda_{u} \times \nu_{u}^{n-m+0.25}}{c_{u}^{m} \times \rho_{u}^{m} \times a_{u}^{n+0.25}}\right) = A_{1} \times (\tau_{1} + \tau_{2})^{u};
\left(\frac{a_{ct}}{\nu_{ct}}\right)^{0.25} = A_{2} \times (t_{1} + t_{2} + \tau_{1} + \tau_{2})^{v}.$$

В результате аппроксимации определены значения показателей степеней в диапазоне температур воды 5° C...200°C: u=0.0572, y=0.2337.

Коэффициенты α_{Γ} и α_{H} будут выглядеть следующим образом:

$$lpha_{_{\mathcal{C}}} = A_{_{\!\! 3}} \times Q^m \times (t_1 + t_2)^u \times \frac{(t_1 + t_2 + \tau_1 + \tau_2)^v}{(t_1 - t_2)^m \times f_{_{\mathcal{C}}}^m \times \ell^{1-m}}$$
 $lpha_{_{\!\! H}} = A_{_{\!\! 3}} \times Q^m \times (\tau_1 + \tau_2)^u \times \frac{(t_1 + t_2 + \tau_1 + \tau_2)^v}{(\tau_1 - \tau_2)^m \times f_{_{\!\! H}}^m \times \ell^{1-m}_{_{\!\! H}}}$, где $A_3 = A \times A_1 \times A_2$

Из этих выражений можно составить комплекс $\frac{1}{\alpha_e} + \frac{1}{\alpha_u}$, входящий в уравнение КТП, который будет выглядеть:

$$\frac{1}{\alpha_{z}} + \frac{1}{\alpha_{u}} = \left[f_{z}^{m} \times \ell_{z}^{1-m} \times \frac{(t_{1} - t_{2})^{m}}{(t_{1} + t_{2})^{u}} + f_{u}^{m} \times \ell_{u}^{1-m} \times \frac{(\tau_{1} - \tau_{2})^{m}}{(\tau_{1} + \tau_{2})^{u}} \right] \times \frac{(t_{1} + t_{2} + \tau_{1} + \tau_{2})^{-y}}{A_{3} \times Q^{m}} = \frac{\Theta}{A_{3} \times Q^{m}},$$

где

$$\Theta = \left[f_{z}^{m} \times \ell_{z}^{1-m} \times \frac{(t_{1} - t_{2})^{m}}{(t_{1} + t_{2})^{u}} + f_{u}^{m} \times \ell_{u}^{1-m} \times \frac{(\tau_{1} - \tau_{2})^{m}}{(\tau_{1} + \tau_{2})^{u}} \right] \times (t_{1} + t_{2} + \tau_{1} + \tau_{2})^{-y}$$

То же для расчетных значений ТО, обозначенных надстрочным или подстрочным индексом "p":

$$\frac{1}{\alpha_{\mu}^{p}} + \frac{1}{\alpha_{\mu}^{p}} = \frac{\Theta_{p}}{A_{5} \times Q_{p}^{m}}$$

КТП ТО выражается формулой:

$$K = \left(\frac{1}{\alpha_{c}} + \frac{1}{\alpha_{H}} + R_{ct} + R_{HK}\right)^{-1} = \left(\frac{\Theta}{A_{5} \times Q^{m}} + R_{ct} + R_{HK}\right)^{-1}$$

То же, расчетный КТП
$$K_p = \left(\frac{\Theta_p}{A_5 \times Q_p^m} + R_{ct}\right)^{-1}$$

Преобразовав и разделив первое уравнение на второе и заменив Q/Q_p =q получим:

$$\frac{\Theta}{\Theta_p \times q^m} = \frac{\frac{1}{K} - (R_{ct} - R_{\mu\kappa})}{\frac{1}{K_p} - R_{ct}} = \frac{\frac{K_p}{K} - K_p \times (R_{ct} + R_{\mu\kappa})}{\frac{1}{K_p} - R_{ct}}$$

В свою очередь, отношение K_p/K можно получить из формулы: $q = \frac{K}{K_p} \times \frac{\Delta t}{\Delta t_p}$

Таким образом, после преобразований получится формула:

$$\left(1 - K_p \times R_{ct}\right) \times \frac{\Theta}{\Theta_p} \times q^{1-m} + K_p \times \left(R_{ct} + R_{HK}\right) \times q = \frac{\Delta t}{\Delta t_p}$$
(7)

Целесообразно вместо термических сопротивлений накипных отложений использовать понятие степени чистоты теплопередающих поверхностей TO.

Выразив в полученной формуле $R_{\text{нк}}$ через степень чистоты β , получим приведенное в начале общее уравнение 1 для водоводяных противоточных одноходовых ТО с заданными расчетными параметрами.

Выводы

- 1. Предлагаемый метод расчетов переменных режимов водоводяных противоточных одноходовых теплообменников распространяется на пластинчатые и кожухотрубные теплообменники и может использоваться при проектировании и эксплуатации трубопроводных систем с теплообменниками, включая диагностику их состояния.
- 2. Метод позволяет по известному расчетному режиму теплообменника рассчитать параметры теплоносителей для любого другого режима.
- В частности, по результатам измерения 4-х температур теплоносителей на портах теплообменника при условии известной степени чистоты, определять в отсутствии расходомеров, величины теплового потока и расходов теплоносителей.
- 3. Расчёты переменных режимов должны выполняться с учётом теплофизических свойств воды иначе достоверность расчётов окажется весьма низкой.
- 4. Метод можно адаптировать к расчету противоточных одноходовых теплообменников с другими, кроме воды, жидкими средами.

Cheleks@yandex.ru

Литература

- 1. Н.М. Зингер, А.М. Тарадай, Л.С. Бармина. Пластинчатые теплообменники в системах теплоснабжения. Москва, Энергоатомиздат, 1995.
- 2. В.С. Орбис, М.А. Адамова. К диагностике технического состояния теплообменных аппаратов. Москва, Журнал «Энергосбережение», 2005, №2.
- 3. Сапрыкин И.М. О поверочных расчётах теплообменников. «Новости теплоснабжения», №5, 2008. С 45...48.